\(\int \frac {\sec (c+d x)}{(a+b \tan (c+d x))^2} \, dx\) [563]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 82 \[ \int \frac {\sec (c+d x)}{(a+b \tan (c+d x))^2} \, dx=-\frac {a \text {arctanh}\left (\frac {b \cos (c+d x)-a \sin (c+d x)}{\sqrt {a^2+b^2}}\right )}{\left (a^2+b^2\right )^{3/2} d}-\frac {b \sec (c+d x)}{\left (a^2+b^2\right ) d (a+b \tan (c+d x))} \]

[Out]

-a*arctanh((b*cos(d*x+c)-a*sin(d*x+c))/(a^2+b^2)^(1/2))/(a^2+b^2)^(3/2)/d-b*sec(d*x+c)/(a^2+b^2)/d/(a+b*tan(d*
x+c))

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.28, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.211, Rules used = {3593, 745, 739, 212} \[ \int \frac {\sec (c+d x)}{(a+b \tan (c+d x))^2} \, dx=-\frac {a \sec (c+d x) \text {arctanh}\left (\frac {b-a \tan (c+d x)}{\sqrt {a^2+b^2} \sqrt {\sec ^2(c+d x)}}\right )}{d \left (a^2+b^2\right )^{3/2} \sqrt {\sec ^2(c+d x)}}-\frac {b \sec (c+d x)}{d \left (a^2+b^2\right ) (a+b \tan (c+d x))} \]

[In]

Int[Sec[c + d*x]/(a + b*Tan[c + d*x])^2,x]

[Out]

-((a*ArcTanh[(b - a*Tan[c + d*x])/(Sqrt[a^2 + b^2]*Sqrt[Sec[c + d*x]^2])]*Sec[c + d*x])/((a^2 + b^2)^(3/2)*d*S
qrt[Sec[c + d*x]^2])) - (b*Sec[c + d*x])/((a^2 + b^2)*d*(a + b*Tan[c + d*x]))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 739

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 745

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m + 1)*((a + c*x^2)^(p
 + 1)/((m + 1)*(c*d^2 + a*e^2))), x] + Dist[c*(d/(c*d^2 + a*e^2)), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x]
 /; FreeQ[{a, c, d, e, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m + 2*p + 3, 0]

Rule 3593

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[d^(2*
IntPart[m/2])*((d*Sec[e + f*x])^(2*FracPart[m/2])/(b*f*(Sec[e + f*x]^2)^FracPart[m/2])), Subst[Int[(a + x)^n*(
1 + x^2/b^2)^(m/2 - 1), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && NeQ[a^2 + b^2, 0] &&
 !IntegerQ[m/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\sec (c+d x) \text {Subst}\left (\int \frac {1}{(a+x)^2 \sqrt {1+\frac {x^2}{b^2}}} \, dx,x,b \tan (c+d x)\right )}{b d \sqrt {\sec ^2(c+d x)}} \\ & = -\frac {b \sec (c+d x)}{\left (a^2+b^2\right ) d (a+b \tan (c+d x))}+\frac {(a \sec (c+d x)) \text {Subst}\left (\int \frac {1}{(a+x) \sqrt {1+\frac {x^2}{b^2}}} \, dx,x,b \tan (c+d x)\right )}{b \left (a^2+b^2\right ) d \sqrt {\sec ^2(c+d x)}} \\ & = -\frac {b \sec (c+d x)}{\left (a^2+b^2\right ) d (a+b \tan (c+d x))}-\frac {(a \sec (c+d x)) \text {Subst}\left (\int \frac {1}{1+\frac {a^2}{b^2}-x^2} \, dx,x,\frac {1-\frac {a \tan (c+d x)}{b}}{\sqrt {\sec ^2(c+d x)}}\right )}{b \left (a^2+b^2\right ) d \sqrt {\sec ^2(c+d x)}} \\ & = -\frac {a \text {arctanh}\left (\frac {b \left (1-\frac {a \tan (c+d x)}{b}\right )}{\sqrt {a^2+b^2} \sqrt {\sec ^2(c+d x)}}\right ) \sec (c+d x)}{\left (a^2+b^2\right )^{3/2} d \sqrt {\sec ^2(c+d x)}}-\frac {b \sec (c+d x)}{\left (a^2+b^2\right ) d (a+b \tan (c+d x))} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.63 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.95 \[ \int \frac {\sec (c+d x)}{(a+b \tan (c+d x))^2} \, dx=\frac {\frac {2 a \text {arctanh}\left (\frac {-b+a \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2+b^2}}\right )}{\left (a^2+b^2\right )^{3/2}}-\frac {b \sec (c+d x)}{\left (a^2+b^2\right ) (a+b \tan (c+d x))}}{d} \]

[In]

Integrate[Sec[c + d*x]/(a + b*Tan[c + d*x])^2,x]

[Out]

((2*a*ArcTanh[(-b + a*Tan[(c + d*x)/2])/Sqrt[a^2 + b^2]])/(a^2 + b^2)^(3/2) - (b*Sec[c + d*x])/((a^2 + b^2)*(a
 + b*Tan[c + d*x])))/d

Maple [A] (verified)

Time = 1.87 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.44

method result size
derivativedivides \(\frac {-\frac {2 \left (-\frac {b^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{a \left (a^{2}+b^{2}\right )}-\frac {b}{a^{2}+b^{2}}\right )}{\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -2 b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-a}+\frac {2 a \,\operatorname {arctanh}\left (\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-2 b}{2 \sqrt {a^{2}+b^{2}}}\right )}{\left (a^{2}+b^{2}\right )^{\frac {3}{2}}}}{d}\) \(118\)
default \(\frac {-\frac {2 \left (-\frac {b^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{a \left (a^{2}+b^{2}\right )}-\frac {b}{a^{2}+b^{2}}\right )}{\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -2 b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-a}+\frac {2 a \,\operatorname {arctanh}\left (\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-2 b}{2 \sqrt {a^{2}+b^{2}}}\right )}{\left (a^{2}+b^{2}\right )^{\frac {3}{2}}}}{d}\) \(118\)
risch \(-\frac {2 i b \,{\mathrm e}^{i \left (d x +c \right )}}{\left (-i a +b \right ) d \left (i a +b \right ) \left (b \,{\mathrm e}^{2 i \left (d x +c \right )}+i a \,{\mathrm e}^{2 i \left (d x +c \right )}-b +i a \right )}+\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{3}+i a \,b^{2}-a^{2} b -b^{3}}{\left (a^{2}+b^{2}\right )^{\frac {3}{2}}}\right )}{\left (a^{2}+b^{2}\right )^{\frac {3}{2}} d}-\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{3}+i a \,b^{2}-a^{2} b -b^{3}}{\left (a^{2}+b^{2}\right )^{\frac {3}{2}}}\right )}{\left (a^{2}+b^{2}\right )^{\frac {3}{2}} d}\) \(190\)

[In]

int(sec(d*x+c)/(a+b*tan(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

1/d*(-2*(-b^2/a/(a^2+b^2)*tan(1/2*d*x+1/2*c)-b/(a^2+b^2))/(tan(1/2*d*x+1/2*c)^2*a-2*b*tan(1/2*d*x+1/2*c)-a)+2*
a/(a^2+b^2)^(3/2)*arctanh(1/2*(2*a*tan(1/2*d*x+1/2*c)-2*b)/(a^2+b^2)^(1/2)))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 215 vs. \(2 (78) = 156\).

Time = 0.27 (sec) , antiderivative size = 215, normalized size of antiderivative = 2.62 \[ \int \frac {\sec (c+d x)}{(a+b \tan (c+d x))^2} \, dx=-\frac {2 \, a^{2} b + 2 \, b^{3} - {\left (a^{2} \cos \left (d x + c\right ) + a b \sin \left (d x + c\right )\right )} \sqrt {a^{2} + b^{2}} \log \left (-\frac {2 \, a b \cos \left (d x + c\right ) \sin \left (d x + c\right ) + {\left (a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, a^{2} - b^{2} + 2 \, \sqrt {a^{2} + b^{2}} {\left (b \cos \left (d x + c\right ) - a \sin \left (d x + c\right )\right )}}{2 \, a b \cos \left (d x + c\right ) \sin \left (d x + c\right ) + {\left (a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} + b^{2}}\right )}{2 \, {\left ({\left (a^{5} + 2 \, a^{3} b^{2} + a b^{4}\right )} d \cos \left (d x + c\right ) + {\left (a^{4} b + 2 \, a^{2} b^{3} + b^{5}\right )} d \sin \left (d x + c\right )\right )}} \]

[In]

integrate(sec(d*x+c)/(a+b*tan(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/2*(2*a^2*b + 2*b^3 - (a^2*cos(d*x + c) + a*b*sin(d*x + c))*sqrt(a^2 + b^2)*log(-(2*a*b*cos(d*x + c)*sin(d*x
 + c) + (a^2 - b^2)*cos(d*x + c)^2 - 2*a^2 - b^2 + 2*sqrt(a^2 + b^2)*(b*cos(d*x + c) - a*sin(d*x + c)))/(2*a*b
*cos(d*x + c)*sin(d*x + c) + (a^2 - b^2)*cos(d*x + c)^2 + b^2)))/((a^5 + 2*a^3*b^2 + a*b^4)*d*cos(d*x + c) + (
a^4*b + 2*a^2*b^3 + b^5)*d*sin(d*x + c))

Sympy [F]

\[ \int \frac {\sec (c+d x)}{(a+b \tan (c+d x))^2} \, dx=\int \frac {\sec {\left (c + d x \right )}}{\left (a + b \tan {\left (c + d x \right )}\right )^{2}}\, dx \]

[In]

integrate(sec(d*x+c)/(a+b*tan(d*x+c))**2,x)

[Out]

Integral(sec(c + d*x)/(a + b*tan(c + d*x))**2, x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 182 vs. \(2 (78) = 156\).

Time = 0.36 (sec) , antiderivative size = 182, normalized size of antiderivative = 2.22 \[ \int \frac {\sec (c+d x)}{(a+b \tan (c+d x))^2} \, dx=-\frac {\frac {a \log \left (\frac {b - \frac {a \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \sqrt {a^{2} + b^{2}}}{b - \frac {a \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \sqrt {a^{2} + b^{2}}}\right )}{{\left (a^{2} + b^{2}\right )}^{\frac {3}{2}}} + \frac {2 \, {\left (a b + \frac {b^{2} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}}{a^{4} + a^{2} b^{2} + \frac {2 \, {\left (a^{3} b + a b^{3}\right )} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {{\left (a^{4} + a^{2} b^{2}\right )} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}}}}{d} \]

[In]

integrate(sec(d*x+c)/(a+b*tan(d*x+c))^2,x, algorithm="maxima")

[Out]

-(a*log((b - a*sin(d*x + c)/(cos(d*x + c) + 1) + sqrt(a^2 + b^2))/(b - a*sin(d*x + c)/(cos(d*x + c) + 1) - sqr
t(a^2 + b^2)))/(a^2 + b^2)^(3/2) + 2*(a*b + b^2*sin(d*x + c)/(cos(d*x + c) + 1))/(a^4 + a^2*b^2 + 2*(a^3*b + a
*b^3)*sin(d*x + c)/(cos(d*x + c) + 1) - (a^4 + a^2*b^2)*sin(d*x + c)^2/(cos(d*x + c) + 1)^2))/d

Giac [A] (verification not implemented)

none

Time = 0.44 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.68 \[ \int \frac {\sec (c+d x)}{(a+b \tan (c+d x))^2} \, dx=-\frac {\frac {a \log \left (\frac {{\left | 2 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, b - 2 \, \sqrt {a^{2} + b^{2}} \right |}}{{\left | 2 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, b + 2 \, \sqrt {a^{2} + b^{2}} \right |}}\right )}{{\left (a^{2} + b^{2}\right )}^{\frac {3}{2}}} - \frac {2 \, {\left (b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + a b\right )}}{{\left (a^{3} + a b^{2}\right )} {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 2 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - a\right )}}}{d} \]

[In]

integrate(sec(d*x+c)/(a+b*tan(d*x+c))^2,x, algorithm="giac")

[Out]

-(a*log(abs(2*a*tan(1/2*d*x + 1/2*c) - 2*b - 2*sqrt(a^2 + b^2))/abs(2*a*tan(1/2*d*x + 1/2*c) - 2*b + 2*sqrt(a^
2 + b^2)))/(a^2 + b^2)^(3/2) - 2*(b^2*tan(1/2*d*x + 1/2*c) + a*b)/((a^3 + a*b^2)*(a*tan(1/2*d*x + 1/2*c)^2 - 2
*b*tan(1/2*d*x + 1/2*c) - a)))/d

Mupad [B] (verification not implemented)

Time = 4.65 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.66 \[ \int \frac {\sec (c+d x)}{(a+b \tan (c+d x))^2} \, dx=-\frac {\frac {2\,b}{a^2+b^2}+\frac {2\,b^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{a\,\left (a^2+b^2\right )}}{d\,\left (-a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+2\,b\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+a\right )}+\frac {a\,\mathrm {atan}\left (\frac {a^2\,b\,1{}\mathrm {i}+b^3\,1{}\mathrm {i}-a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (a^2+b^2\right )\,1{}\mathrm {i}}{{\left (a^2+b^2\right )}^{3/2}}\right )\,2{}\mathrm {i}}{d\,{\left (a^2+b^2\right )}^{3/2}} \]

[In]

int(1/(cos(c + d*x)*(a + b*tan(c + d*x))^2),x)

[Out]

(a*atan((a^2*b*1i + b^3*1i - a*tan(c/2 + (d*x)/2)*(a^2 + b^2)*1i)/(a^2 + b^2)^(3/2))*2i)/(d*(a^2 + b^2)^(3/2))
 - ((2*b)/(a^2 + b^2) + (2*b^2*tan(c/2 + (d*x)/2))/(a*(a^2 + b^2)))/(d*(a + 2*b*tan(c/2 + (d*x)/2) - a*tan(c/2
 + (d*x)/2)^2))